
chenpingling Documentation
Release latest

Dec 30, 2018

Contents

1 2019-chenpingling 3
1.1 Table of Contents . 3

i

ii

chenpingling Documentation, Release latest

The online doc of this is https://2019-chenpingling.readthedocs.io/en/latest/

Contents 1

https://2019-chenpingling.readthedocs.io/en/latest/
_static/screenshots/index/00.png
_static/screenshots/index/00b.png

chenpingling Documentation, Release latest

2 Contents

CHAPTER 1

2019-chenpingling

2019-chenpingling is my playground to practice readthedocs.io.

At first I did it on my local Mac, for both:

*With Sphinx

*With MkDocs

1.1 Table of Contents

1.1.1 Writing your first Django app, part 1

https://github.com/django/django/edit/master/docs/intro/tutorial01.txt

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic poll application.

It’ll consist of two parts:

• A public site that lets people view polls and vote in them.

• An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which version by running the
following command in a shell prompt (indicated by the $ prefix):

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an error telling “No module
named django”.

This tutorial is written for Django latest, which supports Python 3.5 and later. If the Django version doesn’t match, you
can refer to the tutorial for your version of Django by using the version switcher at the bottom right corner of this page,
or update Django to the newest version. If you’re using an older version of Python, check faq-python-version-support
to find a compatible version of Django.

See How to install Django for advice on how to remove older versions of Django and install a newer one.

3

https://docs.readthedocs.io/en/latest/intro/getting-started-with-sphinx.html
https://docs.readthedocs.io/en/latest/intro/getting-started-with-mkdocs.html
https://github.com/django/django/edit/master/docs/intro/tutorial01.txt

chenpingling Documentation, Release latest

4 Chapter 1. 2019-chenpingling

chenpingling Documentation, Release latest

Where to get help:

If you’re having trouble going through this tutorial, please post a message to |django-users| or drop by #django on
irc.freenode.net to chat with other Django users who might be able to help.

Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-
generate some code that establishes a Django project – a collection of settings for an instance of Django, including
database configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the following command:

This will create a mysite directory in your current directory. If it didn’t work, see troubleshooting-django-admin.

Note: You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means
you should avoid using names like django (which will conflict with Django itself) or test (which conflicts with a
built-in Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks), you’re probably used to putting code
under the Web server’s document root (in a place such as /var/www). With Django, you don’t do that. It’s not a

1.1. Table of Contents 5

irc://irc.freenode.net/django
irc://irc.freenode.net/django

chenpingling Documentation, Release latest

good idea to put any of this Python code within your Web server’s document root, because it risks the possibility that
people may be able to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as /home/mycode.

Let’s look at what :djadmin:‘startproject‘ created:

mysite/
manage.py
mysite/

__init__.py
settings.py
urls.py
wsgi.py

These files are:

• The outer mysite/ root directory is just a container for your project. Its name doesn’t matter to Django; you
can rename it to anything you like.

• manage.py: A command-line utility that lets you interact with this Django project in various ways. You can
read all the details about manage.py in /ref/django-admin.

• The inner mysite/ directory is the actual Python package for your project. Its name is the Python package
name you’ll need to use to import anything inside it (e.g. mysite.urls).

• mysite/__init__.py: An empty file that tells Python that this directory should be considered a Python
package. If you’re a Python beginner, read more about packages in the official Python docs.

• mysite/settings.py: Settings/configuration for this Django project. /topics/settings will tell you all about
how settings work.

• mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-
powered site. You can read more about URLs in /topics/http/urls.

• mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See
/howto/deployment/wsgi/index for more details.

The development server

Let’s verify your Django project works. Change into the outer mysite directory, if you haven’t already, and run the
following commands:

You’ll see the following output on the command line:

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are
→˓applied.
Run 'python manage.py migrate' to apply them.

Dec 30, 2018 - 15:50:53
Django version latest, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

6 Chapter 1. 2019-chenpingling

http://127.0.0.1:8000/

chenpingling Documentation, Release latest

Note: Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this
with Django so you can develop things rapidly, without having to deal with configuring a production server – such as
Apache – until you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a production environment. It’s intended only
for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Congratulations!”
page, with a rocket taking off. It worked!

Changing the port

By default, the :djadmin:‘runserver‘ command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

If you want to change the server’s IP, pass it along with the port. For example, to listen on all available public IPs
(which is useful if you are running Vagrant or want to show off your work on other computers on the network), use:

0 is a shortcut for 0.0.0.0. Full docs for the development server can be found in the :djadmin:‘runserver‘ reference.

Automatic reloading of :djadmin:‘runserver‘

The development server automatically reloads Python code for each request as needed. You don’t need to restart the
server for code changes to take effect. However, some actions like adding files don’t trigger a restart, so you’ll have to
restart the server in these cases.

Creating the Polls app

Now that your environment – a “project” – is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain convention. Django comes
with a utility that automatically generates the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web application that does something – e.g., a Weblog
system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a
particular website. A project can contain multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app right next to your manage.
py file so that it can be imported as its own top-level module, rather than a submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py and type this command:

That’ll create a directory polls, which is laid out like this:

1.1. Table of Contents 7

http://127.0.0.1:8000/

chenpingling Documentation, Release latest

polls/
__init__.py
admin.py
apps.py
migrations/

__init__.py
models.py
tests.py
views.py

This directory structure will house the poll application.

Write your first view

Let’s write the first view. Open the file polls/views.py and put the following Python code in it:

Listing 1: polls/views.py

from django.http import HttpResponse

def index(request):
return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map it to a URL - and for this we need a
URLconf.

To create a URLconf in the polls directory, create a file called urls.py. Your app directory should now look like:

polls/
__init__.py
admin.py
apps.py
migrations/

__init__.py
models.py
tests.py
urls.py
views.py

In the polls/urls.py file include the following code:

Listing 2: polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
path('', views.index, name='index'),

]

The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for
django.urls.include and insert an include() in the urlpatterns list, so you have:

8 Chapter 1. 2019-chenpingling

chenpingling Documentation, Release latest

Listing 3: mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
path('polls/', include('polls.urls')),
path('admin/', admin.site.urls),

]

The include() function allows referencing other URLconfs. Whenever Django encounters include(), it chops
off whatever part of the URL matched up to that point and sends the remaining string to the included URLconf for
further processing.

The idea behind include() is to make it easy to plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any
other path root, and the app will still work.

When to use include()

You should always use include() when you include other URL patterns. admin.site.urls is the only excep-
tion to this.

You have now wired an index view into the URLconf. Lets verify it’s working, run the following command:

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world. You’re at the polls
index.”, which you defined in the index view.

Page not found?

If you get an error page here, check that you’re going to http://localhost:8000/polls/ and not http://localhost:8000/.

The path() function is passed four arguments, two required: route and view, and two optional: kwargs, and
name. At this point, it’s worth reviewing what these arguments are for.

path() argument: route

route is a string that contains a URL pattern. When processing a request, Django starts at the first pattern in
urlpatterns and makes its way down the list, comparing the requested URL against each pattern until it finds one
that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example, in a request to https://www.
example.com/myapp/, the URLconf will look for myapp/. In a request to https://www.example.com/
myapp/?page=3, the URLconf will also look for myapp/.

path() argument: view

When Django finds a matching pattern, it calls the specified view function with an HttpRequest object as the first
argument and any “captured” values from the route as keyword arguments. We’ll give an example of this in a bit.

1.1. Table of Contents 9

http://localhost:8000/polls/
http://localhost:8000/polls/
http://localhost:8000/

chenpingling Documentation, Release latest

path() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We aren’t going to use this feature of
Django in the tutorial.

path() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django, especially from within templates.
This powerful feature allows you to make global changes to the URL patterns of your project while only touching a
single file.

When you’re comfortable with the basic request and response flow, read part 2 of this tutorial to start working with the
database.

10 Chapter 1. 2019-chenpingling

	2019-chenpingling
	Table of Contents

